PRD-AL25 278

SENSITIVITV T0, SOUND SPEE
N A. . U

OF SURFACE/BOTTOM REFLECTING
ENSSELAER POLYTECHNIC INST

CAL SCIE. .
B 83 RPI-MATH-136. F/G 28/1

1

NL




B IRV

L gt
-~

- T
fem_pLa

Lo
Rt
e

)

-
PRI
.

BEFEE
o 3343

343 Nm_munum

ll=2
=

i ¥ Y

-
ry

- W e T Y

[~

gy

MICROCOPY RESOLUTION TEST CHART
' NATIONAL BUREAU OF STANDARDS-1963-A

1

-~ .-
e

- ;
L AN

i\ "‘ . "‘

-

-

e i e
ST oy

RPN

ar o

-

a

o




Sensitivity to sound speed of surface/
bottom reflecting transmissions in a
: deep ocean channel

by @

W. L. Siegmann, M. J. Jacobson
and P, Bilazarian

B0 b b by »

wwuimm*rv &

ARL L

I ULULLEY

$
'

Distribution Unlimited

Rensselaer Polytechnic Institute

Trov, New York 12101

DTIC FILE COPY




AR NG

;1

-y

PN BRI |

hatas

[ s
E L %2275

T .
Wy

R |

HAA

>

|

ety

AR
s aa

L

t‘n

o A 3 - - L ) - - - hd - ., . .
3 - ~ F - ~ - . . . v - .- W - - W . . .
PGP PV RN € G E R S O A P S S A T SO S L P

ey
gy Wl

- L ar-a 4 BAaier Al ST -
RIS ACIA At A A " ISR

§L:¢:;.

L

- . . N
. at Al L Aot DI I D S S i )

Sensitivity to sound speed of surface/
bottom reflecting transmissions in a
deep ocean channel

. ©

W. L. Siegmann, M. J. Jacobson
and P, Bilazarian

Department of Mathematical Sciences
Rensselaer Polytechnic Institute

Troy, New York 12181

RPI Math. Rep. No. 136

February 1, 1983

This work was sponsored by
Code 425, Office of Naval Research
Contract No., N000l4-76-C~0288

NR 386-606

DaNCR ML R T A Y ‘__-\ \‘.‘b);“‘ '1.~“.'~b.-",——~

------

'''''''''''''''''''

This document has been approved for public release and sale; its distribution

is unlimited.

...............




TR W LY w b e 1Me A Trer]  da e vt ke N i — . worTa e Pl St S i A AT R PO L A AOE L P PO I D P PO A P
B T T L N R L T N e L s e e N o o o o ey o o o o s

~: ABSTRACT
b
|
-
i [ ‘4 }
o
E: The sensitivity of oceanic sound transmissions to the choice of a sound-

speed profile is analyzed using ray theory. The profile may be selected
L% from a large depth-dependent collection which models the deep ocean sound

channel. Sound propagation is examined bétween fixed source and receiver,
Li both close to horizontal ocean boungaries, for ranges up to about 50 kn.

Given a specified profile, procedures are prescribed for constructing a

1

second, simpler profile so that important acoustic quantities are virtually

identical. The construction methods are easy to apply, have physical in-

i A

terpretations, and identify the critical aspects of profile data which

T
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influence transmissions. The ray geometries associated with the two pro-

files are shown to be very close. Useful formulas are derived which

T
.
L

demonstrate that per-ray and total-field phases and amplitudes correspond-

&j ing to the simpler profile approximate accurately those of the specified
- profile. Schemes are presented for determining range intervals for
s.-:'

replacement of the given profile, based on specified tolerances for phase

and amplitude differences.
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INTRODUCTION

The investigation of any oceanic sound transmission problem requires

SAT

the prior specification of a sound-speed structure in some way, such as by

k
P

fitting data. We address an important sensitivity issue which has received

little or no attention previously. We seek methods to replace a specified

sound-speed profile by a simﬁler type of profile so that significant

£

acoustic quantities with the two profiles are negligibly different. Pre-

vious sensitivity studies have noted differences that can be caused by

| aaramren |
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sound-speed variations. For instance, an investigat:ionl of the sensitivity

of ray theory to small changes in environmental data documents large changes

in transmission loss at ranges less than 20 km resulting from small,

T
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randomly perturbed variations in a linear profile. For another example,

one portion of a study2 concerned with propagation loss in shallow water

displays large variations in normal-mode transmission loss at ranges from

e

PR

10 km to 100 km, that are associated with a family of decreasing profiles

-

having the same average gradient. In addition, there has been much pub-

lished concerning the relative advantages of one type of sound-speed

profile over others, as for instance in Refs. 3-7. Indeed, one trend among
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such studies has been different from our aim, in the sense of advocating
! E: for various reasons the replacement of one type of sound-speed profile by
2 . a more complicated type. For example, the discovery® of possible inaccu-

i 2} racies in acoustic intensity for special transmission situations caused by
ﬁ: slope discontinuities in piecewise-linear sound-speed profiles supported
= the use of more elaborate profiles with curved segmeﬁts. Our motivation is
ig not inconsistent with such results, but is, rather, to specify situations

. and find methods for the replacement of given profiles by simpler ones.
éi There are several important advantages of effecting the replacement
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of a given profile by an acoustically equivalent, simpler one. First,

formulas for significant acoustic quantities may be made more convenient,
useful, and easily interpreted. Second, tﬁe simpler profile, along with
the concomitant procedure for its construction, identifies the critical
aspects of profile data which influence transmission results. For example,
with the profile types and particular transmission problems considered
here, the depth average of the profile data as well as data near particular
ocean depths turn out to be critical., Therefore, it is these features of
the data, rathef than the individual data points themselves, that must be
modeled by the sound-speed profile in a transmission problem. A third
advantage is connected to the fact that, in many propagation studies which
analyze the influence of complicated environmental phenomena on sound
transmissions, it is essential to make various simplifying assumptioms.
Typically, these include modeling the sound-speed distribution for the
ocean region of interest with a relatively simple type of profile. For
example, bilinear approximations to sound-speed structures have been used
to analyze short-range .acoustic tramsmission in cyclonic eddies® and long-
range SOFAR transmission fluctuationg produced by a Rossby wave.® . Thus,
sound-speed profile replacement results of the type in this paper offer an
obvious means for extending conclusions and predictions of propagation
studies, which assume a relatively simple profile, to situations with more
complicated and realistic profiles.

We consider here a fairly general class of depth-dependent sound-
speed profiles which characterize the deep-ocean sound channel. This

channel has been long recognized as a principal feature of the sound-speed

distribution in many regions of the abyssal oceans. The issue of profile-
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replacement sensitivity becomes of special and practical significance for

the sound chamnel, in view of the rich abundance of distinct profiles

developed over the years to describe it. Some of these profiles, contain-

| 3 eragrundt
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ing various parameters, are the bilinear,!® multilinear,’? hyperbolic-

-.‘
A

linear,12 parabolic,13 squared index of refraction quadratic,' Eckart,!®

5=
L

and those contained in Refs. 4-7. The collection of deep-ocean channel

<
"a

profiles we consider also includes those which can be constructed numeri-

cally by interpolation.!®

Ve assume in this study that the ocean boundaries are horizontal.

)

This assumption, along with that of no horizontal or temporal variation

in sound-speed structure, comprise a fundamental model of souqd transmis-

TR
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sion through a deep-ocean sound chamnel, from which more complicated

models are developed by perturbations. Thus, positive profile-replacement

;B

sensitivity results for this situation can be anticipated to be germane to

a variety of more complicated models. We employ ray theory and focus in
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[ Wy )

this initial investigation on surface/bottom reflecting transmissions up

~
[

to intermediate ranges between a source and receiver, each of which is

located on or near either of the ocean boundaries. Our study can be

I’ O' ’,
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extended to include a variety of source-receiver positions not on or near

the ocean boundaries, different types of ray propagation, and larger

Dt
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transmission ranges. Such extensions, which involve both generalizations

kY

of our procedures here and new methods for comstructing simpler replacement

profiles, will be presented in future work.
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We present one scheme in Sec. I for constructing from a specified

sound-channel profile its simpler comparison profile of bilinear type. The

ray geometries associated w#ith these two profiles are shown to be very close.

In Sec. II per-ray phases and amplitudes for the two profiles are demon-
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strated to correspond closely, when the source-receiver range is not too
large. Useful approximate formulas for per-ray phase and amplitude
differences are developed to describe allowable ranges, for specified
source frequency and acceptable phase-and-amplitude-difference tolerances.
These :per-ray results cén be extended to longer transmission ranges, as
described in Sec. III. A different method for choosing a bilinear com-
parison profile is presented there, in which the comparison profile is
wodified slightly at each longer range. In Sec. IV we compare received
total fields associated with the specified sound-channel profile and its
simpler comparison profile. Approximate formulas are presented for total-
field phase and amplitude differences, which facilitate the determination
of those ranges where the total fields match closely. Finally, major

results are summarized in Sec. V.
I. SOUND-SPEED PROFILES AND RAY GEOMETRY

A. Sensitivity problem formulation

We first specify the types of sound-speed profiles to be considered
in this investigation. These profiles c(z) depend on depth z only, de-
creasing from the ocean surface at z = 0 to a minimum sound speed at
positive depth z = z, and then increasing to the ocean bottom at z = zZ,-
The surface, SOFAR-axis, and bottom sound speeds of c(z) are denoted by

s and ey respectively. On 0 < 2z f_zb we also require that c(z) be

continuous and piecewise continuously differentiable (i.e., possess a

continuous derivative except possibly at a finite number of depths). We

denote this collection of profiles by C. Since C is a quite general class,

including profiles which are concave up, piece-wise concave down, or of

L N R A R A R T A P N e e e e T - S e o 4
NV A A A A A T R N T A S e T e e AR ke ot a alad




ar.

e,

[ PR

-
P]
.

e

(i ad

ALK

v b ld

BA
..

| Saareend
O >
- . g

N

AL I SN

-

-

N W T e W TE T, WU WL W TR Ta T W W T T e T MR T T T T e
S SIS R TS, S el i) ORI o .

I N .
Se at pie e pe N N e L o

e Ty e m_ w0 ® e e w e a0
----------------------------------------

mixed concavity, it follows that typical depth-dependent, single-minimum
profiles (for example, those described or used in Refs. 4-7 and 10-16)
belong to C. We note that the procedures to be developed in this initial
study could be extended to apply to other types of profiles.

The sound sourcevS and receiver R, separated by a horizontal dis-
tance R, are taken for simplicity to be located on the ocean boundaries.
We place the origin of our left-handed Cartesian coordinate system on the
ocean surface either at or above S; the'hqi}iontal coordinate x is positive
in the direction toward R, while the (deptg5 coordinate z is measured
positive downward. We restrict this study to ranges which are less than
that range Rc at which any of the rays is either tangent to one of the
ocean boundaries or has a horizontal turning point. If S and R are both
located on the ocean surface (or bottom), all rays for R < Rc are either
bottom reflected (BR) [or surface reflected tSR)] or surface-reflected/
bottom-reflected (SRBR) types. If S and R are located on opposite boun-
daries, all rays are either direct (D) or SRBR types for R < R,. The size
of Rc depends on both the particular profile under consideration and the
boundary locations of S and R. The basic procedures for constructing the
simpler comparison profile from a given profile, and for determining those
ranges less than Rc where important acoustic quantities associated with
the two profiles correspond closely, are exactly the same for all such
source-receiver locations. Furthermore, results display the same qualita-
tive features. Therefore, we focus henceforth on the case where S and R
are both located on the ocean surface, and we use the results for this

case to obtain relevant conclusions for other cases.

As discussed in the Introduction, we formulate the sensitivity
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- and from the comparison profile are negligibly different. We remark that

analysis by singling out one simple profile type from C which is then used
to compare with others in C. For this paper we choose to use a bilinear

comparison profile, with sound speed decreasing linearly from z = Q to its
SOFAR-axis depth and then increasing linearly from this depth to z = z, .
From here on, any unbarred quantity will refer to a profile from the gen-

eral class C, while any barred quantity will refer to a comparison bilinear
profile. For any bilinear profile, there are four parameters required for

its specification which, for'hx;mple, could be taken as ;;, E;, c,» and E£.
The problem is to determine whether, and if so how, these parameters can

be chosen so that corresponding acoustic quantities from a profile in C

one reason for using a bilinear comparison profile is that this profile
typve has been thoroughly analyzed.lo Another reason is the gsimplicity of
its ray geometry and of formulas for relevant acoustic quantities. We
emphasize, however, that our approach is sufficiently general to permit

straightforward extensions to the use of other types of comparison profiles.

B. Comparison profile: shorter ranges

We now present a method of constructing from a given c(z) €C a

single bilinear comparison profile, labeled E&(z), which may be used through-
out an entire interval of shorter source-receiver ranges. This profile
yields positive sensitivity results, in the sense that differences in cor-
responding acoustic quantities for the two profiles are insignificant. 1In
Sec. 1III we shall present a second procedure for construction of comparsion

profiles II(z) which provide positive sensitivity results over longer

transmission ranges. A quantitative characterization of shorter and longer
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ranges will be given subsequently.

For any specified profile c(z) €C and for all source-receiver
boundary locations, the parameters of its unique, corresponding bilinear
comparison profile Ei(z) are determined as follows:

(1) The depth-averaged sound speed of Ei(z) is set equal to that ef
c(z);
(2) the SOFAR-axis depth ;;, the surface sound speed E;, and the bottom
sound speed'Ei of Ei(z) are matched to those of c(z).
The first condition is crucial in the construction of the Ei(z) profile,

giving

e z;l Izb

u A Ei(z)dz = z;l {:b c(z)dz = cu. (1a)

As we shall show in Sec. II, equality of the average sound speeds <y and
EL serves to eliminate dominant terms 1q differences of per-ray acoustic
quantities from c(z) and Ei(z). From Bq. (1a) we obtain a simple equation
relating the SOFAR-axis sound speed E; and the three parameters mentioned
in the second conditiom:

E; = [(:;-E;)zbiﬁ;; + 2cu425. (1b)
The surface and bottom sound speeds of Ei(.) sre matched to those of c(z)
(i.e., E; = cs and E; = cb) primarily for two reasons. First, these con-
ditions are sufficient to guarantee that for any of the boundary locations
of S and R, the ray types and numbers of received rays associated with
Ei(z) nd ¢(z) - e the same, for all ranges up to about Rc. Second, we
shall g.. that these conditions assist in reducing per-ray amplitude
differences. SOFAR-axis depths of Ei(z) and c(z) are matched (i.e., ;; = za)

because we have determined that acoustic quantities in Sec. II are relatively

......
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insensitive to the choice of ;;. It follecws from Eq. (1b) and the matchings

of the second step that the four parameters of the bilimear profile Ei(z)

are uniquely specified. Thus, we write

g,z + ¢, » 02z<z
cI(z) =9 _ (2a)
sﬁ‘z—zb)+ ¢, z <z<z,
where
g, = (e ez, » gy = (e )/ (z-2) . (2b)

The critical aspects of sound-speed profile data which are used to specify
a c(z) profile in this situation are now apparent. The construction pro-
cedure for the Ei(z) profile implies that data near the surface, SOFAR
axis and bottom are clearly important. Also, the role of the sound speed
cu over the entire ocean depth identifies the data mean as critical.

We illustrate our procedures with a hyperbolic-linear sound-speed pro-

file,!?2 consisting of a combination of linear and hyperbolic-cosine func-
tions and, for simplicity, select equal surface and bottom sound speeds.

The solid curve in Fig. 1(a) is a graph of the c(H)(z) profile, given by

'g z+c s 0<<z<z .
u s 2z2z,
c_cosh(k (z-z)] , z <z<z_,
c(ll)(z)l= p a u a u a (3a)
cacosh[kl(z-za)] , z, <z<z,
\ Sz(z‘zb) + cs » z‘e <z i zb .

We use the same numerical values for Z,» 2.5 Zps cs, and c, as in Ref. 17.

Also, we compute the upper linear slope 8, the parameter ku’ and the upper

c(H) (H)

joining sound speed c, - (z) at

(zu) by matching values and slopes of ¢

z=2z ., and similarly at z = Zp. Parameter values (to six significant digits) are
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listed in the second column of Table I. If S and R are both located on the

ocean surface or the ocean bottom, Rb is equal to 69.0 km for the c(H)(z)

profile; if S and R are located on opposite boundaries, R, is equal to 34.5
km. We can now readily determine the corresponding shorter-range bilinear

comparison profile E*g)(z). From Egs. (1) and (3a),

ca = 2cu-cs, (3b)

where

-1 2 2 _2 -1 2 2 2 -1
ey = - (22)) {[(cu *c “-2¢ g, 1+ [(zca ~cp e g, 1}. (3¢c)
Values of all Eig)
(H)
I

(z) parameters appear in the third column of Table I.
The profile c' 2 (2) is given by Eq. (2a), and is the dashed curve in Fig.

(1a).

C. Ray geometry

Both the c(z) and E}(z) profiles have the same numbers of received
ray types for all ranges up to about Rb' As further indications of the
close similarities between ray geometries associated with c¢(z) and its
comparison bilinear profile, we present approximations for ray angles. The
primary importance of these results is for the subsequent development of
useful formulas for per-ray phase and amplitude differences. For surfaced
S and R, we let Sy for N > 1 denote the SRBR ray which has N bottom reflec-
tions between S and R, and S+ the BR ray. Our formulas for acoustic
quantities, associated with varius rays in the case of S and R on the ocean
surface, can be adapted to the cases with S and R on opposite boundaries
if 2N is replaced by 2N ~ 1 for N > 1. sSimilarly, for the case of bottomed

S and R, our formulas remain essentially the same if N is interpreted as

the number of surface reflections between S and R.

P St e -t M A bt SRt T S e
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Our first approximation is concerned with the initial angles, esN
and EQN’ of rays SN and gk, respectively, between surfaced S and R. All
ray angles in this paper are measured positive clockwise from the x-axis,

as displayed in Fig. 1(b) on the first half-lobes of rays S_ and S..

N N
Using depth as the ray parameter, the range equations for SN and gk are!®
z -
b 2 2 2
R(GSN) 2N {) c(z)[cs sec esN - ¢c(2)7] dz (4a)
and
== - =2 22— 2%
R(6_) = 2N fo c (z) e “sec™® - c (2)°] da. (4b)
Combining Eqs. (4a) and (4b) for fixed range R, we have
F(esN) = R(GSN) - R(BsN) = 0. (5)

Expanding F(GSN) to linear terms about es

N EQN’ and substituting the re-

sulting expression in Eq. (5), we obtain
. - — L
GSN = OSN - F(GSN)/F (GSN). (6a)

)
After applying the weighted mean value theorem for integrals19 to F (Gsn),

using Eq. (4a), and evaluating the resulting expression at esN = BQN’ we
have
-1
' = 2 2= ey 2 2= 2
F (GSN) - [cs sec GsNtanesN(cs sec esN - cv) IR, (6b)

where c¢. = c(V)for some fixed V such that 0 f£v<z

v Using Eq. (4b) to

b
evaluate F(E;“) and substituting Eq. (6b) in Eq. (6a), we arrive at

. T 2, 2 V.ry =
esH ] esN - [l-(cv/cs)cos GSN]cotesN(AR/R), (6¢)

where

AR

"

R-R(esN) (6d)




e
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" and R(5;N) denotes the range equation for ray SN evaluated at the initial

A angle for ray gk. To obtain upper and lower bounds for the magnitude of

;3 the angle correction in Eq. (6¢), the second term on the right, we can

;; simply set ¢, = ¢, and ¢, ™ Cn S max (cs, cb), respectively. After approx-

R imating this second term by the average of the upper and lower approxima-

o tions, we write

& 8 = Oy + Yy (7a)

f; where

Yy = - (-le,? + ¢ ) /2¢_Plcos®s_ JeotT_ (AR/R). (70)

e Using, for example, the c(ﬂ)(z) and E(?)(z) profiles described in

fﬁ Part B, we found that the right side of Eq. (6¢) is an excellent approxi-

. mation for all N > 1 and all ranges R up to about 40 km. For instance, we

.l determined 681 using a numerical root-finding method on the c(n)(z) range
equation’? and 5;1 from an explicit formula.'® The numerical calculation
for Ssl agreed with the approximation of Eq. (7a) to at least five signifi-

!! cant digits. Thus, E;N closely approximates esN for this example, as suggested

A‘ in Fig. 1(b). Equation (6a) is expected to represent a good approximation

z for rays associated with other profiles in C, and we conclude that the

- initial angles for all rays associated with the c(z) and E&(z) profiles

| are close for shorter ranges. The same conclusions can be shown to hold

}: for other ray angles, such as those at the ocean bottom. Other approxima-

= tions for relevant quantities involving the initial angles may be estab~
lished readily using Eq. (7a). For example, an approximation required in

Secs. IIBand IIIB concerns the ratio of the tangents of the initial angles,

S

given by




12
1:.<1:168N/::ame$H =1+ EN, (8a)
where
= = 2=
Ey 5 - Yytand_csc 6 . (8b)

We now present a second approximation for esN which will be helpful
in deriving qualitative information concerning per-ray amplitude differences

in Sec. IIB. It can be shown that the matching of average and surface

sound speeds of c¢(z) and E&(z) permits simplification of the quantity AR

in Eq. (6d). If this simplification is inserted into Yy in Eq. (7b), we

féi obtain an approximation for esu, which is valid for the shorter ranges
3 where Ei(z) is useful, of the form
Oy * Oen + Ty (92)
!!i where
“ Ty = - [2/ R/ 1L {1-[Ce 24e D) 12¢ P1e0s%8 Yoot (9b)
&;g and

I = zb-l f:b fEI(z)z-c(z)Z]/Eszdz. (9¢)

We remark that, since the sign of PN depends only on the dimensionless

constant Is’ Eq. (9a) can be used to determine whether esN is greater or
less than E;N for shorter ranges. For our previous numerical comparison
of c(a)(z) and E‘g)(z), for example, Is has the positive value of 1.32 x

-5

10 ¥, so we conclude that E;N > esN’ as shown in Fig. 1(b). This small

numerical value of Is is typical of other c(z) and Ei(z) profiles, although

the sign of Is may, of course, differ.
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bt II. PER-RAY RESULTS: SHORTER RANGES

’ The source S is assumed to emit an omnidirectional cw signal pro-

portional to sin( 2mft ), where f is frequency in Hz. A ray will arrive at

‘A.u
P

te

the receiver R in the form ANsin[ZTr(ft - ¢N)], where Ay is the relative

amplitude owing to spreading and bottom losses (we neglect all other losses,

r including those due to attenuation and scattering). The phase ¢N (in cycles)
{‘ is assumed to Aiffer from that at the source because of travel time and

i phase shifts at boundary reflections. In this section we discuss per-ray
i’ phase and amplitude differences of rays associated with the c(z) and EI(z)
, profiles, for an interval of shérter S-R ranges, where the latter profile
“ yields positive sensitivity results.
t_ A. Per-ray phase comparisons
i The quantities TN and ON (or ?N and E'N) are travel times and phase
- shifts at each bottom reflection of rays associated with c(z) [or ;I (z)].
E‘ We have

’ ¢N - HN - [(N-1)/2] - No. (10)
*\’ and similarly for '5“, where the second term on the right side of Bq. (10)
- accounts for phase shifts at surface reflections. The expression for per-
L ray phase difference is
(‘ By = by - By = £(T, - T) - Nlo - 0. (11)

In Sec. IC we showed that the values of bottom angles of rays associated

with c(z) and EI(z) are very close. Since the bottom sound speeds of c(z)
and E-I(z) are matched, we can approximate A by

Apy = £(T - 'r'n) = AT, (12)

As a numerical illustration, we computed A¢N for rays associated with the

) =(H)

(z) and ¢ 1 (z) profiles using Egqs. (11) and (12) and Rayleigh reflec-

''''''''''''''''''''''''''''
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® (References 10 and 12 provide the relevant travel-time

tion :heory.z
formulas, and bottom parameter values are given in Sec. IIB.) For a
source frequency of 200 Hz and for ranges up to about 69 km, Eqs. (11)
and (12) differed very little, at most in the third significaﬁt figure.
The close match between Eqs. (11) and (12) is not expected to depend on
the particular bottom-interaction model selected.

We next derive an important approximation for A¢N in Eq. (12),
which enables us to determine readily a range interval on which all per-

ray phases associated with c(z) and Ei(z) correspond closely. Let § be

the dimensionless quantity defined by & (c‘ - E;)cs-l, one measure of
the difference between the c(z) and E&(z) profiles. Since § is small and
ray geometries for c(z) and'Ei(z) are very close, we can find an approxi-

mation for the travel-time difference from Ref. 21. We note the identity

I -1 = o1 (13a)
c(z) cs{cI(z)cs + 6[c(2) cI(z)](ca c,) },
choose E}(z) as the unperturbed state in the formalism of Ref. 21, and

apply Eq. (13a) and a depth ray parametrization to Eq. (9) of Ref. 21 to

obtain

s on [P = = 2y 2
ATN - 2N'L [cg(2z)-c(z)]c (2) {1—[cI(z)/Eh] }-%dz, (13b)

where E& is the Snell's law constant for ray gk. For our purpose we found

it convenient to specify 3& by

B

N cuseCGLN, (14a)

where ¢ is given by Eq. (la) and GLH

corresponds to the value EL. Using the identity

is the angle along the ray §; which

Fl(z) - 'c‘u (1+€(2)], (14b)
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where

T(z) [ZI(z)-'EuJEu'l, (14c)

and substituting Eqs. (14) into the denominator of the integrand of Eq. (13b),
we may write

l,1.1

bty = 2N I:"[Zl(z)—c(z)]{Eu[1+E(z)1}'2(1-{cos'6uu[1+€(z)]}2)' z. (15)

By expanding the integrand in Eq. (15) as a Maclaurin series in €, noting
that the leading term vanishes because of the equal average sound speeds

of c(z) and EI(z) , and using Eq. (12) we obtain the key approximate formula

A¢N = 2N(fzb/cu)1u G(Euu), (16a)
where
1, = zb'l !:” tZI(z>2-EI(z)c(z)]/Zuzaz (16b)
and
- 2
G, = (1-3sin B'uu)/sins'é—uu. (16¢)

In order to locate those ranges where 76“ closely approximates ¢N' we
first use Eq. (l6a), a much simpler expression than Eq. (12), to describe
the qualitative behavior of A¢N' For fixed N and increasing R, it follows
from the behavior of G in Eq. (l16c) that if ]:u is positive (or negative),
then A¢N is an increasing (or decreasing) function of range, from negative
(or positive} through zero to positive (or negative) values. Moreover, it
can be shown using Eq. (16a) [or Eq. (11)] and Egs. (4) that ¢, is equal
te a product of N and a function of N/R. This implies that the zeros of A¢N

as N varies are equally spaced in range; i.e., that A¢N(NR1) = 0, where Rl
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denotes the range at which A¢1 vanishes. In order to avoid near-source
effects, we do not consider ranges which are less than, say, 1 km. It
follows from Eg. (l6a) that for 1 < R < Rl' the A¢N are all of the same
sign, and, for a fixed N, |A¢N| achieves its maximum value at 1 km.
Finally, we note that for very short ranges, |A¢N| increases in a manner
proportional to N.

To illustrate the qualitative behavior of A¢N and the accuracy of
the approximation Eq. (l6a), we computed per-ray phase differences as-

(H) (z) and ‘E(;l)

sociated with the ¢ (z) profiles from 1 km up to about nb =
69 km. The source frequency for our examples is 200 Hz, and the rays
with significant amplitudes at these ranges, as determined in the next
subsection, are N = 1 to 4. We display in Fig. 2 the graphs of A¢1, A¢2,
and A¢3 up to about 30 km. The solid (or dashed) curves describe exact
(or approximate) per-ray phase differences which are computed using Eq. (11)
br Eq. (16a]. These curves indicate that A¢N for all N is small up to
about 20 km. We note the generally high accuracy of the Eq. (16a) approx-
imation to Eq. (11), in this case for which I,(=8.05 x 10™°) is positive,
All curves in Fig. 2, as well as numerical calculations up to Rc, show
that A¢N increases from negative to positive values as R increases, for all
N. Finally, we note that the previously described qualitative behaviour of
A¢N at ranges less than R1 = 14.3 km is illustrated in Fig. 2. For instance,
at ranges less than 4 km, |A¢N| increases in a manner which is proportional
to N.

Since A¢N is predicted by Eq. (16a) to vanish at some range, it
follows that, for each N and for some range interval, ¢N and 3; correspond

very closely. On the other hand, |A¢N| gets unacceptably large for suffi-

ciently long ranges. This growth obviéusly becomes most severe for the

4
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o
! BR (N = 1) rays well before any SRBR rays (with N > 1), as can be observed

in Fig. 2. We use this fact to determine a maximum range value, Ri, for

T
. .i .I

18
138

-— |
which the per-ray phases of all rays associated with cI(z) acceptably I‘
|

approximate those of c(z). Let %% be a phase tolerance. To determine R:,
»
23 we take N = 1 and R > R in Pq. (16a) and set |
e ‘w
5% |84, | = g, an
Y-' The monotonicity of AON guarantees that there is a unigque value R; which
‘ solves Bq. (17) and which increases with W Letting & be defined by
:'. — -1 -— -
) 3 = < -
™ o zl(txb)/culllulq’ and X lingul, noting that 0 < X < v3/3 corres
( pondstol>nl,anduubstitutinqaand§1nto Eq. (17), then we obtain
W ¥ + 3% - a = 0. (18a)
. For 0 < a < &, we note that the solution i.L to Eq. (18a) takes the form??
1 1 1
- 3 2 243 2 2 43
o X, = o {[4-a"+(k-a") 17 + [-a”-(ka%) 17} - a. (18b)
W '
We combine the solution ;1 to Eq. (18a) with the range oquntion” for the
! BR ray associated with ;I(‘) to determine the upper range limit Rl;,
b Poop==l, ==l #2 =248 ~-1 52 =24 —-1x272%
N R= 2[(gp, 4 g ) (B %c ) gy (B T-c ) g (B %0 ) ] (19a)
- where
}
v - =2 -
B =c,a-%% 7 (19b)
| ,__ For the determination of a lower range limit ’i.' the phase tolerance qL
i o should be chosen more strictly than 9, (for example, 9, " qplz) . because
< of the previously mentioned fact that |A¢N| increases with N for very
{“: short ranges. Since |A¢1| achieves its maximum value at 1 km for ranges
‘ less than ni, the method for the computation of RL is as follows: if
e N
N
| L'
\
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|A¢l| at R=1 km is less than or equal to 9 choosc RL = 1 km; otherwise,
set |A¢1| = qL and compute RL in exactly the same manner as Ri.

Given any profile c(z) in C, we have developed a straightforward,
analytical procedure using Eq. (l16a) for determining a range interval
[RL' Ri] in which the per-ray phases associated with E}(z) approximate
acceptably well those associated with c(z). We illustrate this interval
(H) —(H)

(z) and ¢ I

phase tolerance, we select 9 = 0.05 cycles (and q = 0.025 cycles) and

by means of the ¢ (z) profiles. For the upper (and lower)
use our procedure to find that, for a source frequency of 200 Hz, [RL' Ri] =
[L xm, 20.0 km]. Since the dashed A¢1 curve has been computed in this
example, range intervals corresponding to these and other tolerance levels
may also be obtained graphically from Fig. 2. That is, Ri is that range
greater than Rl which corresponds to the ordinate value |A¢1| =y and RL
is obtained similarly. Finally, we remark that, although A¢1 associated
with the BR rays continues to grow rapidly for R > Ri in this particular
example, the A¢N for N > 1 remain small for a significant range interval
beyond Ri. This feature, of having only a single dramatically growing
per-ray phase difference, can be shown by our qualitative discussion to
apply to other profiles in C, and leads to an extension of positive per-ray

phase sensitivity results to longer ranges in Sec. III.

B. Per-ray amplitude comparisons

To compare amplitude differences between corresponding rays asso-
ciated with a c¢(z) profile and its bilinear counterpart E}(z), we first
develop an approximation analogous to that of Eq. (l6a) for phase. For
any ray sN' the amplitude at the receiver relative to that at a unit dis-

tance from the source is given by

D S SV L U S AV WP P PO Y IPRNT O
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' %‘ (BN) (IO/IX)N (20)
o and similarly for AN' where (Io/Ix)N and BN represent the geometric
s spreading loss and loss per bottom reflection. We shall neglect differ-
r ences in bottom losses of rays Sy and -S-N for the same reasons, i.e., very
) ~ close bottom angles and equal bottom sound speeds, that we neglected bottom
tz phase-shift differences previously. We also ignore differences in the

* = =c )
- Snell's law constants BN g sec'asN and B-N c secesN here, another very
) -
E’J good approximation which is based on the fact that cg = € and results of
b Sec. IC. After computing the geometric spreading losses??® and invoking

our approximations, we have

v - - 8
o AN/AN = (tanesN/tanesN)Y ’ (21a)

‘ where

3 3
. — - !‘ - I' -
2 Y= ( jz"EI(z) 1-[e, (21 /8% dz)(fzbc(z) (1-le(2) /8% dz) . (21b)
a 0 .0
P If we substitute the identity
-
.- c(z) = csll-i;A(Z)]. (22a)
N where
F‘ M) = [etz)-g,)5, ™, (22b)
yon and similar ones for :I(Z) and A—(z) s into the denominator of the integrand
= of Eq. (21b), retain linear terms in A(z) and A(z), and use the equal
{‘. average sound speeds of c(z) and 'EI(z), we find
. ¥ s (a7 ]” (23a)
E where
F: y = 3cot25.N{zb-1 f:b[c(z)/gu]A(z)dz}. (23b)

,
[
.
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and similarly for y. Then, if we expand the right side of Eq. (23a) in a
@; Taylor series about (y,?) = (0,0) and substitute this expansion and Eq.

o (8a) into Eg. (21la), we obtain an approximation for AN/ik in the form

AN/Kh 2 14n, (24a)

where

Ny = EN+CN. (24b)
= 2=

EN = Kscot esN, (24c)
:i- -

Ks = 2(cs/cu)Is, (244)

and EN and Is are given by Eqs. (8b) and (9¢c), respectively. For any
specific c(z) and c_(z) profiles, K_ is a constant which we anticipate is
small in magnitude because Is is small. For example, in the case of the
c(H)(z) and E‘g)(z) profiles, Ks = 2.02 x 10-5. We easily establish from

Eq. (24a) the important approximation for the per-ray amplitude anomaly

ALN (in aB),

ALN = 20 1oglo(AN/AN) = any. (25)

where d = 20/(109810)- 8.69. It can be shown that the approximation in

"
.
»

Eq. (25) is close for all N and for somewhat longer ranges than that in

Eq. (l6a).

ﬁ We use the convenient approximation of Eq. (25) to specify those
ﬁi ranges where AN and i& correspond closely for all N. At very short ranges
[; (i.e., very steep initial angles), Eq. (25) shows that all per-ray ampli-
.

%3' tude anomalies are negligible, so that we can choose the minimum range

< _

ey for which AN and AN correspond closely as 1 km. Turning next to a deter-
:fj mination of a corresponding maximum range, we note certain qualitative

..
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features of ALN It can be shown with the aid of Eq. (9a) that EN and CN'

.

which appear in Egq. (25), both depend in the same way on the sign of Is'

Therefore, for all N and any R, ALN is of the same sign as I. If we fix

g
. -’

R and vary N, then EN and T, will be greatest in magnitude for the ray with

T
R

the most shallow initial angle. Since EN and ;N are both of the same sign,

we conclude that for a fixed range, the greatest per-ray amplitude anomaly

pom—a
SRR
A B

predicted by Eq. (25) occurs for the (BR) N = 1 rays. If we fix N and

vary R, then by similar reasoning ‘M‘N‘ is an increasing function of range.

T
e
et e

Insofar as these qualitative features of AI.N depend on Eg. (9a), they are

certainly valid for the ranges where R < Rl;, but in fact they are often

- 3 e
D

true for longer ranges as well. From these qualitative results, we base

fRAn A
-. \. -‘

the determination of a maximum range limit R‘; on the BR rays. Given a

per-ray amplitude tolerance q,r we determine R: via Eq. (25) by setting

_J

IALll =q,. Since IALll is an increasing function of range, there is a

- be Al
I
st

unique value of RI; which solves this equation and increases with Iy There-

fore, XN approximates AN acceptably well for all N for ranges in the interval

H [1,R’I‘].

Since we have two upper limits Rl; and &? for application of the
ré EI(z) comparison profile, the gquestion naturally arises as to which value
l(— is smaller and thus more restrictive. We next present convincing numeri-

cal evidence that even for moderately small values of 9y R? is typically

(1)

L much greater than RP. We computed ALN associated with the C  (z) and

I
;(l;) (z) profiles using both the exact formulas in Eq. (20), which include

bottom losses, and the approximation Eq. (25). Rayleigh reflection theory
1

——y

was used as the bottom loss model, with numerical values!? of 1757.17 ms

for the ocean bottom sound speed and 0.525 (and 0.877) for the ratio of

water to bottom densities (and sound speeds). If we employ a typical

L R T L. .
ol e o ol ot Tl B el i APRE IS DR, WP P
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criterion that a ray with N bounces is significant if AN/A1 > 0.01, then for
—(H)

the c(H)(z) and ¢ 1 (z) profiles, this condition is satisfied for all rays
N < 4 up to about Rc = 69 km. For this example, the solid (and dashed) curves
in Fig. 3 represent the exact (and approximate) per-ray amplitude anomalies,
in d8, for the N = 1 and 2 rays for ranges up to 45 km. The N = 3 and 4
curves are not displayed because their anomalies are extremely small. An
important result from Fig. 3 is that the per-ray amplitude anomalies for all
rays are insignificant, not only up to Ri = 20 km but also up to and well be-
yond 45 km as well. 1In addition, the dashed-curve approximations are very
close to the solid curves for all ranges in Fig. 3. There is a sharp increase
in the solid N =1 (and N = 2) curve, followed by a discontinuity, at a range
of about 16.5 km (and 33.1 km), where the bottom angles of the N =1 (and .

N = 2) rays approach their critical values in .Rayleigh reflection theory.
Although for each N the ranges associated with the critical bottom angles of
corresponding rays are close, they are not exactly equal. The particular
Rayleigh bottom-loss model used in our calculations for the solid curves in
Fig. 3 overmagnifies thg bottom-loss differences at these ranges, and, con-
sequently, the per-ray amplitude anomalies. A more refined bottom-interaction
model would not be expected to produce such conspicuous differences. With the
exception of these features due to the bottom-interaction model, we note that
Fig. 3 iilustrates all the qualitative variations of ALN with N and R discussed
above for the case of Is positive. For instance, for each N, ALN is positive
and increases with range, while for each R, IALNI decreases with N. Selecting
9, to be 0.4 dB, we find that Rg is equal to 52.2 km, a substantially larger
value than R; = 20.0 km in this example. If we define RI = min(Rii Rg), then

all per-ray phases and relative amplitudes associated with c(z) and E}(z) are
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acceptably close for the shorter ranges in the interval [RL’ RI]' Although it

A

is a simple matter to consider either the case of RI = RP or that of RI = RI'

I
R based on our numerical examples we shall restrict ourselves hereafter to the
highly probable case that R = R .

With the procedure specified for determining the shorter-range inter-
val {RL, RI] for the case of S and R on the ocean surface, results for other
i source-receiver boundary locations follow readily. We note first that the
key formulas Egs. (16a) and (25) fQr the case of surfaced S and R can be
adapted without essential change to the other cases. Second, the crucial
role of phase and amplitude differences between the BR rays for surfaced S
and R is replaced by those between the SR (or D) rays for S and R on the
bottom {or on opposite boundaries). For simplicity here, we consider only
the highly probable occurrence that per-ray phase differences alone determine
the shorter-range intervals. If S and R are both located on the ocean bottom,
then Eq. (16a) holds if N is interpreted as the number of surface reflections.
Thus, the shorter-range interval is exactly the same as [RL' RI] for surfaced
S and R. similar reasoning shows that the travel-time difference for the D
rays at range R/2 is exactly half that of both the BR and SR rays at range R.
We can then argue that if S and R are on opposite boundaries, the size of the
shorter-range interval is more than half the size of [RL' RI], extending from
less than max(1, RL/Z) to more than RI/Z. This interval is the same whether
- S is on the surface and R is on the bottom, or vice-versa. Therefore, deter-

mination of the range interval for acceptable correspondence between per-ray

quantities associated with the two sound-speed profiles can be effected for

any near-boundary locations of S and R.
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III. PER-RAY RESULTS: LONGER RANGES

A. Comparison Profile

The main difficulty in extending the close correspondence of per-ray
acoustic quantities, associated with the c(z) and Ei(z) profiles, to ranges
;onger than R_ is the unacceptably large values of A¢1. However, we recall

I
that there is one range value Rl' which is less than Ro, for which A¢l van-
ishes. This suggests that at a range R > RI, a slight perturbation of the
E;(z) profile could perhaps shift R1 to coincide with R. This idea motiva. .
a scheme to construct a different bilinear comparison proi.ie for sz+h range
R > RI' We indicate members of the family of bilinear co.iparison profiles,
one for each range, by E&I(z).
For a specific c(z) profile and range R > RI' the parameters of the

E}I(Z) profile are determined as follows:

(1) The phases of the BR (or N = 1) rays for the two profiles are set

equal;

(2) the depth-averaged sound speeds of the two profiles are set equal:

(3) the difference between the surface and bottom sound speeds of c..(2)

IT
is equal to that of c(z), i.e.,
C,=C¢ = Cp~Cg7 (26a)
(4) the SOFAR-axis depths of the profiles are equal, i.e.,
z =2z (26b)

a a

We note that SR (or D) is substituted for BR in condition (1) in order to

specify the E}I(z) profile for S and R on the ocean bottom (or on opposite
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boundaries). Also, conditions (2) and (4) were selected for the same reasons
as in the construction of the E&(z) profile in Sec. IB, and condition
(3) is weaker than that used for E;(z) in order to permit imposition of con-
dition (l1). Finally, we remark that our construction procedure identifies
important information for the selection or specification of a c(z) profile
at longer ranges. Condition (1) idéntifies the phase of the ray with the
largest amplitude as significant , while conditions (2) - (4) identify the
same critical aspects of the profile data as those noted earlier for shorter
ranges.

Condition (2) is §iven by Eq. (la) with _;I(z) written in place of
E}(z). If Eqs. (26a) and (26b) are substituted in Eq. (1b), then an expression

for E; of the —;I(z) profile is obtained:

p— _ _ _l _ f— _ _
c, = [(cb c )z, ]za + 2cu cg = (o cs). (26c)

—

We recognize from Egs. (26) that ;;, cb, and E; depend only on E; and known

c(z) parameters. Moreover, for a fixed R > RI and a given c(z) profile, the
phase ¢l of the BR ray associated with c(z) can be calculated analytically or

numerically. Therefore, E; can be determined by condition (1):

A, (e ) = &) - $,(c) =0, ex)
where the other bilinear profile parameters are regarded as functions of E;
only. The formula for E}I(z) is then given by Eqs. (2) with E; and E; written

in place of cg and Cye Eq. (27) is assumed to have a solution E; close to Cgr
which we have verified by analysis which will not be presented here. We re-

gard E; to be close to Cg if

l(cs-E;)/(cs-E;)I << 1, (28)

e A.v it vl il tiiie e e mcia A a4 s _ma M aa.s. & % . .®
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From Eqs. (26a), (26c), and (28), it follows that 'c'b is close to ¢, and that

b
the SOFAR~axis sound speeds of the E}(z) and _}I(z) profiles are close. There-
fore, the -;I(z) profile at each longer range can be regarded as a small per-
turbation of the E}(z) profile for the given c(z) in C.

The solution E; of Eq. (27) varies in a complicated manner with range,
because E; is close to g while simultaneously A¢1(cs) was shown in Sec. IIA
to increase significantly at longer ranges.

We therefore propose that Eq.

(27) be solved numerically for each R > RI using Eq. (12), i.e., using exact

travel-time formulas. Thus, Eq. (27) becomes
Tl(cs) = Tl' (29)
where Tl is known and ?i(E;) can be found in Ref. 10. Bottom phase-shift

differences are neglected in Eq. (29) for the same reasons thev were omitted

in Sec. IIA. We have found that Newton's method?“ for solving Eq. (29) is

adequate for speed and high accuracy, and that cs provides an acceptable

initial estimating value for E;. We note that Eq. (29) and its analogues for

other source-receiver boundary locations only contain travel times. By argu-
ments similar to those given at the end of Sec. II, we conclude that the E}I(z)

profile for R > R, is exactly the same for S and R on the surface as for S and

R on the bottom. Similarly. we conclude that the II(z) profile for R more
than RI/Z is exactly the same for S on the surface and R on the bottom, as for
S on the bottom and R on the surface.

We have determined that'Eg?

ranges greater than RI = 20 km up to about Rc = 69 km. The value of E; for

(H)

(z) profile from the c (z) profile for

the E'(I“I’ (z) profile varies between a minimum of 1540.05 ms™) and a maximum of

1

1540.86 ms ~. This indicates that E; < c_ (=1541.50 ms™}) in this example for

all R > R_.

¢+ For all values of Es, the left side of Eq. (28) is less than 0.027,

A T T T - - . -
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80 we conclude that E; is close to cg for the Efgg(z) profile when RI < R < Rb’
Since cb = cs for our particular example c(H) (z) profile, Eb = Zs for the E(:I:HI) (z)

profile. The value of E;, computed from Eq. (26c), varies between a minimum of
1482.54 ms-; and a maximum of 1483.35 ms-l. Thus, at any range, the graph of
—(H) —(H)

c (z) is very close to that of the ¢ 1

11 (z) profile displayed in Fig. (la).

As we noted, condition (3) is weaker than the corresponding require-
ment imposed on the EI(z) profile. However, it is sufficient to guarantee an

equal number of received rays of identical type for the two c(z) and E} (2)

I
profiles, for ranges up to about Rc. Moreover, the formulas in Eqs. (7a) and
(8a) , which apply without modification to the c(z) and _;I(Z) profiles, repre-
sent good approximations at longer ranges. We conclude that the geometry and
angles of corresponding rays associated with the c(z) and _;I(z) profiles can
be shown to be very close for all source-receiver boundary locations. The
verification of this important result proceeds as in Sec. IC, so we omit the

details here.

B. Per-ray comparisons

We recall from subsection A that the difference A¢1 between the phases
of the (BR) N = 1 rays for the c(z) and _II(z) profiles is identically zero
when R > R;. We now present approximations to A¢N, N > 2, and use them to
demonstrate that these phase differences remain acceptably small over a sub-
stantial range interval beginning at RI and ending at some range R:I. Since
we found En(z) to be a small perturbationoff EI (z), the discussion in Sec.
IIA of Adk can be applied here with minor modifications. Specifically, the

assumptions and expansions used to derive Eg. (l16a) are easily seen to holad

for N > 2 in a longer range context, so that
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8¢, = 28[(f£2)/c, ) 1, 6B ), N> 2, (30a)
where
_ -1 - 2 — —2
I, Tz fo [egy(®) “~c  (2)e(z) ) /e, "az (30b)
and
- . 2= .
G(F,,) = (1-3sin’B, ) /sin>® - (30c)

The quantity é-aN in Eqs. (30a) and (30c) designates the angle of the Nth ray

at the SOFAR axis associated with -n(z) . All the conclusions in Sec. IIA
concerning the qualitative behavior of Aql for N > 2 can also be shown to hold
here for R >.RI via Eq. (30a). For instance, if Ia is positive (or negative),
then for a fixed N > 2, M’N increases (or decreases) from negative (or positive)
values through zero to large positive (or negative) vaiues. We also conclude
from Eq. (30a) that |A¢N| gets large at sufficiently long ranges for any given
N, and that the growth becomes most severe for the N = 2 rays well before any

rays with N > 2, This implies that given some phase tolerance, such as 9

which was used to specify R‘f, the determination of the range RI;[should be
based on the N = 2 rays. Specifically, RI;I is found among the ranges beyond
which A¢2 vanishes and is that range at which |A¢2| = q,. where A¢2 is given
by Eq. (30a).

To illustrate our results and the accuracy of Eq. (30a), we computed
per-ray phase differences associated with the c(m (z) and Z(IHI) (z) profiles
from RI = 20 km up to about Rc = 69 km. The rays with significant amplitudes

at these ranges are, as in Sec. II, N =1 to 4. We display in Fig. 4 graphs

of A¢N for N = 1 to 3 from 20 to 52 km. The solid curves give exact values
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!. of A¢N computed from Eq. (11) as described in Sec. IIA, while the dashed
: curves give approximate values, determined from Eq. (30a), of A¢N for N = 2
i; and 3. The qualitative behavior described previously for A¢N is illustrated
- in Fig. 4 for a case where Ia in Eq. (30a) is positive. All curves in Fig.

; -7 4 as well as calculations for A¢4 show that |A¢N| for each N > 1 is small

for a substantial range interval beginning at RI' The approximations for

' . N > 2 are seen to be very close over all ranges shown. It is important to

i Q; stress that there is a significant drop in magnitude of A¢“ for all N and

? R > RI when the c(n) (z) comparison profile is used in place of the cu;)( )

( iﬁ comparison profile. The biggest decrease, of course, occurs for N = 1 be-
- cause of the construction of the c(H)(Z) profile, but the decrease in magni-
2‘ tude is noteworthy for N > 2 as well. These trends can be appreciated by
is comparing the relatively smaller values of A¢n in Fig. 4, for 20 to 30 kn,

to those- in Fig. 2. Using the same Qalue of 0.05 cycles for qp 88
. éﬁ in Sec. IIA, we find that sz = 45.2 km for this example. Therefore, for our

selected tolerance and a source frequency of 200 Hz, the comparison profile

' () (1)

S ranges in the interval (R, ] = (20 km, 45.2 km].
‘ Ry

(z) provides acceptable per-ray phase approximations to c¢ (z) for
We next briefly discuss the determination of a range interval (RI R ],
in which all amplitudes associated with corresponding rays of the c(z) and

cII(z) profiles agree closely. Again, because c (z) is a small perturbation

- off cI(z), thf‘fprmulas of Egqs. (24) and (25) for AN/AN and ALN, N>1, can

be applied here. It can be shown that for each value of N, the range of valid-

L aaagt 0t
bl

ity of these approximations generally includes those ranges where ALN is small.
1 f% As in Sec. IIB, the determination of R;I should be based on the N = 1 rays, ‘

which typically display the largest per-ray amplitude anomaly for R > RI. Thus,
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if qQ is the amplitude tolerance (in dB), we determine R:I as the range at
which IALll =q,. vhere ALl is given by Eq. (25).

We computed per-ray amplitude anomalies for rays associated with the

(H) —(H)

c (z) and Crr

of ALN (in @B), for N = 1 to 3 and 20 km < R < 52 km, including bottom losses

(z) profiles. The solid curves in Fig. S give exact values

and calculated as described in Sec. IIB. These curves indicate that for all
N in this example, AI.N is small for a significant range interval beginning

at K.I: The cause for the increases, followed by discontinuities in the N = 2
and 3 solid curves, is the same as that given for Fig. 3. The dashed curves
in Fig. 5 are approximations for ALN' computed using the analogue of Eg. (25)
for R > RI. The approximation for ALl is quite good from 20 km to 40 km and
fairly good from 40 km to 45 km. The N = 2 (and N = 3) dashed curve is a good

approximation from 20 km to 33.1 (and 49.7) km, in which interval bottom losses

- occur, and is an excellent approximation from 33.1 (and 49.7) km to 52 km,

& where there are no bottom losses. Thus, the difference in accuracy of these
i approximations as range varies is consistent with the fact that the difference
B in bottom losses for the two profiles is neglected in Eq. (25). We note that

all dashed curves in Fig. 5 display the same qualitative features as the

dashed curves in Fig. 3; i.e., they increase with range, and for a fixed range,
they decrease as N increases. Using, for example, the tolerance q, = 0.4 aB,

(H)

. it follows that R?I = 45.4 kn for the ¢ (z) and E(I!? (z) profiles.

2 P A

[ ] We define RII = min(Rn, RH) and conclude that all per-ray phases and
amplitudes associated with a —n(z) profile acceptably approximate their coun-
terparts for a c(z) profile at any range in the interval (RI, RII]' In our

numerical example, for a source frequency of 200 Hz and our selected tolerances,

s (R, Rn] = (20.0 km, 45.2 km]. The extension of our results to other boundary
’
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locations of S and R proceeds in a similar fashion to that indicated at the

!! end of Sec. I1. 1In particular, recalling that the —;I(z) profile for R > RI
o is the same for bottomed S and R as for surfaced S and R, we conclude that
& (RI' RII] is the same interval in these two cases. Similarly, if S and R
!! are located on opposite boundaries, the longer range intervals are the same.
?; extending from more than RI/2 to more than RII/Z. In summary (when S and R
Ei are located on the same boundary), we define for any c(z) profile its overall
o bilinear comparison profile as
i -

cI(z) ' FI. <RX RI R
= c(z) = (31)
= c () Ry SRS R, .
Lo
27 For any given range in [RL' RII] this simpler profile c(z) has per-ray phases
ii and amplitudes which agree, to within specified tolerances, with those of

corresponding rays associated with the given profile.

Iv. TOTAL FIELD

E In this section we investigate the total-field phase and amplitude

-
.

differences for ranges in [RL, RII]' associated with the c(z) and c(z) pro-

[

[ et

files. With a source emitting an omnidirectional cw signal, the total field

—
::- at the receiver associated with a c(z) profile is

[N Nma

i Asin2n(£ft-9)] = L xANsin[zﬂ(ft—¢ 1, (32)
o N=1 N

Y T

and similarly with K} 3} K&, and 3& corresponding to c(z). The quantities

A and ¢ represent the total-field amplitude and phase, respectively, and the

integer Nmax is the number of significant rays. Expressions for AN and ¢N

in Eq. (32) are given by Egs. (20) and (10), respectively. The total-field
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amplitude and phase are determined from

Nmax Npa
I Ausin(2ﬂ¢,)]2 + [ 20 A cos(2md )12, (33a)
N N N
N=1 N=1
and
o -1 Nmax -1 Nmax
. sin(2m®) = A ~ I ANsin(2ﬁ¢N),cos(2ﬂ¢) =A " LI Acos(2ng), (33p)
R N
N N=1 N=1
, respectively, and similarly for A and 3. If we define AA = A - A, the total-

o field logarithmic amplitude anomaly (in dB) is

AL = 20log, (a/R) = 201og1°(1+AA/K) ) (34a)

g The total~field phase difference (in cycles) is

AD =0 -, (34b)

and is represented here by values on the interval [-%, %] cycles.

The total-field phase and amplitude differences depend only on per-ray

phases and amplitudes, corresponding values of which for each N are close on
[RL’ RII]. However, this fact alone is not sufficient to guarantee that Ad
and AL are small for all ranges in [RL, RII]’ since small differences in
individual quantities might conceivably combine so as to make A% or AL not
negligible. On the other hand, from our previous results we can expect that
per-ray differences are particularly small on [RL' RI] (and a substantial
range subinterval of (RI, RII]). Therefore, for many c(z) profiles, positive
total-field sensitivity results can be anticipated for a sizable portion of
[RL' RII]'

To facilitate the determination of those ranges where total-field
phase and amplitude differences are small, we seek to present simple approx-

imations for Ad and AL. We define the dimensionless quantity eMN for M ¥ N
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as the phase-perturbation difference in radians between rays M and N,

€y = 2T(A0,00) 1<M, NSN_ . (35a)

We also define 33& as the difference in radians between the phase of ray N

and the total-field phase using the c(2) profile:

B =@ H L<NSN___. (35b)

We note that in our subsequent development, 33& is not required to be small.
Our approximations for Ad and AL involve a generalization of those presented
for the cases Nmax = 2 and 3 in Ref. 25, for which three assumptions are em-
ployed: (1) The EMN guantities are sufficiently small compared to one; (2)
AA/A is small enough so that the total-field equations may be expanded in
this quantity; and (3) AN can be approximated by K& for all N. The first
assumption is satisfied in our situation because we showed in Secs. II and
III that on [RL, RII] all per-ray phase differences are small and vary with
range in a monotone fashion. The second assumption holds because we employ
the approximations where Ad® and AL are small and because from Eq. (34a) AL
is small if and only if AA/A is small. The third assumption is certainly
true on [RL’ RI], where all per-ray amplitude differences are insignificant,
as well as for some portions of the range interval (RI, RII] where per-ray
amplitude differences are relatively small. e improve the approximation to
AL in Ref. 25 by not requiring (3), above, but rather that differences in
per-ray amplitudes [or, equivalently, that ALN in Eq. (25)] are small. A
similar modification could be effected for the approximation to 4%; however,
from numerical calculations, this change improves the accuracy of the Ad

approximation very little, so we omit this modification here.
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Our approximations for any range in [RL' RII] are

. -1 tma
8% & ap,~(2m 1 T

N#M

xem (XN/i) cos (HN) , (36)

and

Nmax Nmax — ——
AL = a[ I e, (A A)sin(88 )+ HIR-R) I ""n (A /A)cos(8d)]. (37
N#M
In Egs. (36) and (37), M is any fixed integer between 1 and Nmax' nN is given
by Eq. (24b), d is specified below Eq. (25), and H denotes the Heaviside func-
tion. We do not give the rather lengthy derivation of Egs. (36) and (37) for

(i.e., € = - €_)

arbitrary Nmax’ remarking only that the skew—symmetry of SMN VN M

enables any choice of M in these equations to yield the same values for A¢ and
AL. On (RI' RII] the quantity A¢1 appearing in Eqs. (36) and (37) is zero,
while all other per-ray phase differences which appear there are represented

on [RL' RI] (or (R, RII]) by the approximations of Eq.(16a) [or Eq. (30a)]. The
use of approximate. rather than exact, per-ray phase difference formulas in our
total-field phase~ (and amplitude-) difference approximation is numerically
fully satisfactory at most ranges in [RL' RII] where A® (and AL) is small. How-
ever, as R approaches RI (or RII) the critical A¢1 (or A¢2) approximation is
typically an overestimate [see, for example, Fig. 2 (or Fig. 4) from 15-20 km
(or 33-45.2 km)], which could cause Egs. (36) and (37) to overestimate the sizes
of the total-field phase and amplitude differences. We note that Eqs. (36) and
(37) are valid under suitably weak assumptions which permit their application
both to other sensitivity problems and also to situations where environmental

or other variations produce small relative changes in phases and/or amplitudes

of individual ray arrivals.
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Before applying our approximations for A¢ and AL to determine ranges
where total-field phase and amplitude using the profile c(z) are acceptably
close to those for c(z), we first discuss some features of them via an ex-

ample. Using .the hyperbolic-linear profile c(m

(z) of Fig. 1(a), its bilinear
comparison profile Z(H) (z), and a source frequency of 200 Hz, we calculated
exact (and approximate) values of A$¢ and AL on [RL, RII] = [1 km, 45.2 km]

from Eqs. (34b) and (34a) [and Egqs. (36) and (37)], with Nmax = 4, Both Ad
and AL oscillate rapidly as range varies, so their values were computed with
range increments of 0.0l km, with several additional calculations using 0.001
km increments to check the less refined results. Figure 6 (and 7) shows graphs

(H)

of upper and lower bounds for A® (and AL) associated with the ¢ {(z) and

-c_(H) (z) profiles, for ranges from 1 km to 40 km. These exact (solid curves)
and approximate (dashed curves) bounds are obtained by interpolating through
the computed maximum and minimum values of A® and AL on 1 km intervals. The
discontinuities in the bounds occuring in both Figs. 6 and 7 at RI = 20 km

—=(H)

arise where ¢ T

of A® (and AL) itself is included in Fig. 6 (and 7) from 9-13 km (and 9-13 km

(z) is replaced by E(IHI) (z). A schematic sample of the graph

and 26-30 km), although A9 (and AL) actually oscillates more rapidly than sug-
gested in the schematic. We stress that despite these characteristic noise-
like fluctuations, both A% and AL typically assume .alues on any given range
interval which are significantly greater than their lower bounds and smaller

than their upper bounds.

We focus next on the A® results in Fig. 6. The bounds show clearly that
Ad is small for all ranges shown in Fig. 6. Moreover, we see that Ad is minis-
cule (]A®]| < 0.004 cycles) from 20 km to about 32 km, the range interval where

per-ray phase differences are smallest for this example (see Fig. 4). If the
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A¢l curve in Fig. 2 were superimposed on Fig. 6 from 1 to 20 km, it would lie
between the bounds in Fig. 6. This clear qualitative and quantitative simi-
larity between A¢1 and A% indicates that at least for shorter ranges, A9 tends
to be dominated by the first rays. Thus, taking M= 1 in Eq. (36) for ranges
in [RL' RI], we note that the first term on the right side of Eq. (36) is the
more significant. The bound approximations are seen from Fig. 6 to be very
good from 1 km to about 34 km, and to deteriorate somewhat beyond 34 km. We
note that the overestimate of |A0! by Eg. (36), mentioned previously, occurs
in the dashed lower bound beyond 34 km. This overestimate of the approximate
A® bounds and the fact that |A¢| typically assumes values significantly less
than these bounds should be taken into account when the acceptable tolerance
QP for total-field phase differences is selected. Recalling our choice of 9%
for the per-ray phase difference tolerance, we select QP = 0.10 cycles. We,
therefore, conclude via Eq. (36) that the total-field phase using the profile

E{H) (H)(z) on the entire interval

(z) acceptably approximates that using ¢
[R, R ,] = [1 km, 45.2 kn].

Before discussing the total-field amplitude anomaly in Fig. 7, we give
an example from another transmission problem which shows that provacation-
loss differences can be large for profiles which possess very similar features.
In one portion of a study2 mentioned earlier, shallow-water propagation losses
associated with eight decreasing profiles composed of linear segments are com-
pared. All of these profiles possess the same surface and bottom sound speed
and average gradient. Depth-averaged normal-mode propagation losses (inco-
herently summed) for these profiles were computed for a water depth of 100 m,
ranges up to 100 km, and a source frequency of 200 Hz. Propagation-loss

differences among these profiles amounted to as much as 3dB at 20 km, 10 B at

50 km, and 20 @B at 100 km. Returning to the total-field amplitude anomaly
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for the c(H)(z) and E{H)(z) profiles, we see that Fig. 7 shows small values

of AL from 1 km to about 35 km. Very small values for AL(|AL| <0.25 dB) occur
over the same range interval, 20-32 km, and for the same reason that A has its
smallest values. On the other hand, above about 33 km, values for |AL| become
large fairly rapidly. The behavior of AL at these rangescan be attributed to
the combined effects of increasing per-ray phase (principally A¢2) as well as
amplitude (principally ALl) differences. In constrast, such volatile growth
does not occur for ranges below RI’ because only per-ray phase differences sig-
nificantly affect AL at these ranges. The occurrence of non-negligible per-ray
amplitude differences on (RI’ RII]’ following their absence on [RI’ RII]’ suggests
an explanation for the upward shift of the bounds curves on (RI, RII]’ following
their near-symmetry on [RL, RI]' In fact, the midpoints between the bounds in

Fig. 7 are positive and increase with range on (R in a manner entirely

> Rl
consistent with the qualitative behavior of AL1 in Fig. 5. We also note that
the dashed curves in Fig. 7 are very good approximations to the exact bounds
from 1 km to about 33 km and deteriorate beyond 33 km. As with the total-
field phase difference, the overestimate of the approximations in Fig. 7
occurs here also. Taking into account the overestimates of the approximate
AL formulas and the fact that |AL| assumes values that are typically much less
than these bounds, we select a total-field amplitude tolerance QA of twice 9,
or 0.8 dB. Then, we can conclude via Eq. (37) that the total-field amplitude
using the profile E(H)(z) acceptably approximates that of c(n)(z) for ranges
on the interval [1 km, 33.3 km]. Combined with our discussion of total-field

phase for this example, this conclusion extends to the entire received total

field. Finally, we note that the range interval «f acceptable total-field
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correspondence in this example coincides largely with ranges where either
per-ray phase or amplitude differences are insignificant, as might be ex-

pected.

V. SUMMARY

- In this paper we present methods to replace a given sound-speed pro-
file in certain transmission problems by a simpler profile so that corres-

- ponding acoustic quantities are negligibly different. The profiles considered
{}ﬁ here belong to a general class of depth-dependent, single-minimum profiles

¥ii which model the deep-ocean sound channel. Using ray theory, we investigate
surface reflecting/bottom reflecting transmissions between fixed source and

receiver located on or near the ocean boundaries and separated by a short-to-

medium range distance. We focus on procedures for constructing a simpler,
comparison profile of bilinear type, but the principal features of our tech-
nique are sufficiently general to allow extensions to other types of comparison
profiles.

For shorter ranges, the bilinear comparison profile is constructed by
setting its depth-averaged sound speed equal to that of the specified profile.
In addition, the SOFAR-axis depth and the surface and bottom sound speeds of
the two profiles are matched. This method identifies the sound-speed data
mean, along with profile data near certain ocean depths, as critical in
determining the characteristics of received transmissions. Thus, when results
of our analysis apply, key properties of the data, rather than the accurate
matching of a sound-speed profile at all data points, are primary. The ray
geometries associated with the specified and comparison profiles are shown to
be very close. In particular, at each range under consideration, there is

exactly the same number of received rays of each type associated with each
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profile, and the surface and bottom angles and the Snell's law constants of
corresponding rays are nearly identical. 2s a consequence of the method of
constructing the comparison profile, the per-ray phases and amplitudes asso-
ciated with the comparison profile approximate well those of the specified
profile on some interval of shorter ranges. Relatively simple analytical
approximations to the differences in per-ray phases and amplitudes between
the two profiles are developed. Among other uses, these approximations lead
to an easy way for determining precisely the aforementioned interval of
shorter ranges, as a function of cw source frequency and of specified toler-
ances of acceptable phase and amplitude differences.

These conclusions, which can be referred to as positive per-ray sen-
sitivity results, are then extended to longer ranges by means of a different
procedure for construction of a bilinear comparison profile. The key element
of the extension is to choose a bilinear profile so that the per-ray phase
difference is negligible for the rays with the minimum number of boundary
reflections. Other conditions for the determination of the comparison profile
are the same as for the shorter-range case except that only the difference
between the surface and bottom sound speeds is matched, rather than the values
themselves. The longer-range bilinear comparison profile, which differs slightly

depending on the source-receiver range, is found to be a small perturbation of

the shorter-range comparison profile. Therefore, the ray geometries as well
as the per-ray phases and amplitudes associated with a specified profile and
its comparison profile remain very close. Useful per-ray phase and amplitude
difference approximations are presented which specify the range interval where
the per-ray quantities correspond closely. The overall length of the range

interval is shown to be the same, provided the sound source and receiver are
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located on the same ocean boundary. For a typical sound-channel profile con-
sisting of linear and hyperbolic-cosine segments, this interval extends from
1 km to 45.2 km. If the source and receiver are located on opposite ocean
boundaries, the interval of positive per-ray sensitivity results is more than
half the length of that when the source and receiver are on the same boundary.

Comparisons of the received total field for a specified profile and its
bilinear replacement profile are also performed. Simple approximate formulas
are presented for total-field phase and amplitude differences between the two
profilés; these formulas represent a major extension of previously known results.
The approximations are general enough to be applicable both to other sensiti-
vity problems and to studies where environmental or other variations produce
small relative changes in acoustic quantities of individual ray arrivals. The
approximation are exploited here to construct accurate upper and lower bounds
for total-field differences. The bounds are shown to be small for ranges
where per-ray results match closely. Further, they determine those ranges of
acceptably good total-field correspondence, which for a typical example and
for reasonable tolerance criteria are [1 km, 45.2 km] (and [1 km, 33.3 kn])
for total-field phases (and amplitudes).

In future work the authors plan to extend the techniques and results of
this initial investigation to study sound-speed profile replacement for other
acoustic configurations. These may include varieties of given and comparison
profiles, longer source-receiver ranges, source and receiver locations away
from ocean boundaries, other types of ray transmissions, situations involving
receiving arrays as well as point receivers, and different ocean boundary
models. For such problems, we expect that well-approximating the ray geometry

and per-ray acoustic quantities associated with the given profile would have an
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_: important impact on the choice of both comparison profile type and its parameters.
{ . -
- . It is also anticipated that simple approximation to acoustic differences in

individual ray quantities and in total-field variations would assist in formu-

- lating the construction procedure for the comparison profile and in specifying
2 - its range of utility.
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FIGURE LEGENDS

{(a) Hyperbolic-linear sound-speed profile c(H)

bilinear comparison profile Z(I;)

(z) and shorter range
(z). (b) First half-lobes of corres-
ponding rays.

Exact (solid) and approximate (dashed) per-ray phase differences

(H)

(cycles) vs. range (km) for ¥ = 1 to 3 rays corresponding to c (z)

and 3(;” (z) profiles. Frequency £ = 200 Hz.

Exact (solid) and approximate (dashed) per-ray amplitude differences

(H)

(dB) vs. range (km) for N = 1 and 2 rays corresponding to ¢ (z)

—(H)

and ¢ 1 (z) profiles.

Exact (solid) and approximate (dashed) per-ray phase differences

(cycles) vs. range (km) for N = 1 to 3 rays corresponding to c(H) (z)
'5(;11) (z) profiles. Frequency f = 200 Hz.

Exact (solid) and approximate (dashed) per-ray amplitude differences

(H)

(dB) vs. range (km) for N = 1 to 3 rays corresponding to c {z) and

—(H) .
Crr (z) profiles.

Exact (solid) and approximate (dashed) bounds for total-field phase

(H) (H)

difference (cycles) vs. range (km) corresponding to c (z) and ¢ (z)

profiles. Frequency f = 200 Hz.

Exact (solid) and approximate (dashed) bounds for total-field ampli-

(H)

tude difference (dB) vs. range (km) corresponding to ¢ (z) and

E'(H) (z) profiles. Frequencj( £ = 200 Hz.
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